inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gerd Meyer,* Nazife Cesur and Stephan Bremm

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Sc–N) = 0.010 Å R factor = 0.039 wR factor = 0.081 Data-to-parameter ratio = 26.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tetraamminehexabromodiscandium(III)

The title compound, $[Sc_2Br_6(NH_3)_4]$, was obtained by the reaction of ammonium bromide, $(NH_4)Br$, with scandium metal in a sealed tantalum container. The crystal structure contains isolated dimers of bromide edge-connected $[Sc-mer-(NH_3)_3Br_3]$ and $[Sc(NH_3)Br_5]$ octahedra. $Sc(NH_3)_2Br_3$ is isotypic with $Sc(NH_3)_2Cl_3$.

Comment

Just like $(NH_4)_2[Sc(NH_3)Br_5]$ (Böhmer & Meyer, 2001), the mono- and diammoniates of scandium(III) bromide, $Sc(NH_3)Br_3$ and $Sc(NH_3)_2Br_3$, have been obtained by the reaction of ammonium bromide, $(NH_4)Br$, and scandium metal. Both compounds crystallize isostructurally with the respective chlorides, $Sc(NH_3)Cl_3$ and $Sc(NH_3)_2Cl_3$ (Meyer & Klein, 2002). The crystal structure of the diammoniate, $Sc(NH_3)_2Br_3$, is presented here.

In Sc(NH₃)₂Br₃, atom Sc1 is surrounded by three ammonia and three bromide ligands, both in a meriodional arrangement. Sc2 has only one ammonia ligand and is further surrounded by five bromide ligands. These two octahedra, $[Sc1(NH_3)_3Br_1Br_{2/2}]$ and $[Sc2(NH_3)Br_3Br_{2/2}]$, are connected through a common bromide edge (Fig. 1). The Sc1-N distances [2.27 (1) Å (2 \times) and 2.28 (1) Å] are slightly longer than the Sc2-N distance of 2.21 (1) Å, which is very close to the Sc-N distance in both $Sc(NH_3)Br_3$ (Meyer *et al.*, 2003) and $Sc(NH_3)Cl_3$ (Meyer & Klein, 2002), where $[Sc(NH_3)X_5]$ (X is Cl or Br) octahedra also occur. The Sc-Br distances are between 2.58 (1) and 2.62 (1) Å for the terminal ligands and between 2.65 (1) and 2.75 (1) Å for the edge-connecting ligands, all averaging to 2.64 Å, which is very close to the average Sc-Br distance of 2.65 Å in Sc(NH₃)Br₃. The unsymmetrical dimers, which may be considered as

Figure 1

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved One dimer of octahedra in the structure of $Sc(NH_3)_2Br_3$, showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Received 23 September 2003

Accepted 29 September 2003

Online 7 October 2003

Figure 2

A perspective view of the crystal structure of Sc(NH₃)₂Br₃ in a polyhedral representation, showing the $[Sc(NH_3)_3Br_1Br_{2/2}]^+ \cdot [Sc(NH_3)Br_3Br_{2/2}]^$ dipoles.

 $[Sc(NH_3)_3Br_1Br_{2/2}]^+ \cdot [Sc(NH_3)Br_3Br_{2/2}]^-$ dipoles, are arranged as shown in Fig. 2.

Experimental

Ammonium bromide, (NH₄)Br (5 mmol, 490 mg), and scandium metal (3.6 mmol, 163 mg) were placed in a tantalum container, which was then sealed by helium arc welding. and jacketed with a silica ampoule. The reaction mixture was heated to 623 K for 100 h. Colourless single crystals of [Sc₂Br₆(NH₃)₄] were selected under a microscope in an argon-filled dry box.

Crystal data

[Sc ₂ Br ₄ (NH ₂) ₄]	Z = 2
$M_r = 637.52$	$D_{\rm r} = 2.827 {\rm Mg m^{-3}}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.211 (2) Å	Cell parameters from 2678
b = 10.157 (3) Å	reflections
c = 11.350 (3) Å	$ heta = 1.9 – 29.7^{\circ}$
$\alpha = 105.39 \ (2)^{\circ}$	$\mu = 16.88 \text{ mm}^{-1}$
$\beta = 90.76 \ (2)^{\circ}$	T = 293 (2) K
$\gamma = 109.85 \ (2)^{\circ}$	Column, colourless
$V = 749.0 (4) \text{ Å}^3$	$0.2 \times 0.1 \times 0.1 \text{ mm}$

Data collection

Stoe IPDS II diffractometer ω and φ scans Absorption correction: numerical; the absorption correction (X-RED; Stoe & Cie, 2001) was performed after optimizing the crystal shape using X-SHAPE (Stoe & Cie, 1999) $T_{\min} = 0.100, \ T_{\max} = 0.148$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.081$ S = 0.702938 reflections 111 parameters H-atom parameters constrained 8

6953 measured reflections 2938 independent reflections 1237 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.077$ $\theta_{\rm max} = 26.0^{\circ}$ $h=-8\rightarrow 8$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

 $w = 1/[\sigma^2(F_o^2) + (0.0201P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.70 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.00190 (15)

Table	1
-------	---

Selected geometric parameters (Å, °).

Br21-Sc2	2.575 (3)	Br23-Sc2	2.622 (3)
Br11-Sc1	2.538 (3)	Br22-Sc2	2.594 (3)
Br1-Sc1	2.654 (3)	Sc1-N11	2.269 (9)
Br1-Sc2	2.679 (3)	Sc1-N12	2.269 (9)
Br2-Sc1	2.679 (3)	Sc1-N13	2.284 (10)
Br2-Sc2	2.745 (3)	Sc2-N21	2.211 (10)
Sc1-Br1-Sc2	95.35 (9)	Br1-Sc1-Br2	86.61 (9)
Sc1-Br2-Sc2	93.25 (8)	N21-Sc2-Br21	95.2 (3)
N11-Sc1-N12	91.6 (4)	N21-Sc2-Br22	87.9 (3)
N11-Sc1-N13	175.3 (4)	Br21-Sc2-Br22	92.64 (9)
N12-Sc1-N13	90.5 (3)	N21-Sc2-Br23	87.8 (3)
N11-Sc1-Br11	91.6 (3)	Br21-Sc2-Br23	92.89 (8)
N12-Sc1-Br11	93.2 (3)	Br22-Sc2-Br23	173.27 (10)
N13-Sc1-Br11	92.4 (3)	N21-Sc2-Br1	171.6 (3)
N11-Sc1-Br1	89.0 (3)	Br21-Sc2-Br1	93.17 (9)
N12-Sc1-Br1	172.8 (3)	Br22-Sc2-Br1	92.17 (9)
N13-Sc1-Br1	88.4 (3)	Br23-Sc2-Br1	91.35 (9)
Br11-Sc1-Br1	93.95 (9)	N21-Sc2-Br2	86.8 (3)
N11-Sc1-Br2	88.2 (3)	Br21-Sc2-Br2	177.95 (11)
N12-Sc1-Br2	86.3 (3)	Br22-Sc2-Br2	87.55 (8)
N13-Sc1-Br2	87.7 (3)	Br23-Sc2-Br2	87.06 (8)
Br11-Sc1-Br2	179.43 (12)	Br1-Sc2-Br2	84.79 (9)

Table 2 Hydrogen-bonding geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{N13-H13A\cdots Br23^{i}}$	0.89	3.12	3.690 (10)	124.1
N13 $-$ H13 B \cdots Br21 ⁱⁱ	0.89	3.00	3.854 (11)	161.3
N13-H13C···Br23 ⁱⁱⁱ	0.89	2.92	3.722 (9)	150.9
N11 $-$ H11 A \cdots Br22 ^{iv}	0.89	2.82	3.684 (9)	163.3
N11−H11B···Br22	0.89	3.13	3.846 (11)	139.4
$N21 - H21A \cdots Br11^{v}$	0.89	2.77	3.514 (10)	142.5
$N21 - H21B \cdot \cdot \cdot Br21^{vi}$	0.89	2.89	3.669 (10)	147.5
$N21 - H21C \cdot \cdot \cdot Br21^{vii}$	0.89	2.81	3.609 (10)	150.5
N12 $-H12A\cdots Br21^{ii}$	0.89	3.11	3.712 (10)	127.2
$N12-H12B\cdots Br23^{i}$	0.89	2.79	3.671 (10)	169.7
$N12 - H12C \cdots Br22^{iv}$	0.89	2.80	3 678 (9)	168.2

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) x, y - 1, z; (iii) -x, -y, 1 - z; (iv) 1 - x, -y, -z; (v) 1 + x, 1 + y, z; (vi) 1 + x, y, z; (vii) 1 - x, 1 - y, 1 - z.

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with N-H distances of 0.890 Å. For all H atoms, a common $U_{iso}(H)$ value was refined.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Böhmer, N. & Meyer, G. (2001). Z. Kristallogr. Suppl. 18, 125.
- Brandenburg, K. (1996). DIAMOND. Release 1.0.3. University of Bonn, Germany.
- Meyer, G., Cesur, N. & Pantenburg, I. (2003). Acta Cryst. E59, i145-i146.
- Meyer, G. & Klein, D. (2002). Z. Anorg. Allg. Chem. 628, 1447-1450.
- Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.

inorganic papers

Stoe & Cie (1999). *X-SHAPE*. Version 1.06. Stoe & Cie, Darmstadt, Germany. Stoe & Cie (2001). *X-RED*. Version 1.22. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (2002). X-AREA. MainMenu Version 1.16. Stoe & Cie, Darmstadt, Germany.