Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gerd Meyer,* Nazife Cesur and Stephan Bremm

Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail:
gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Sc}-\mathrm{N})=0.010 \AA$
R factor $=0.039$
$w R$ factor $=0.081$
Data-to-parameter ratio $=26.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetraamminehexabromodiscandium(III)

The title compound, $\left[\mathrm{Sc}_{2} \mathrm{Br}_{6}\left(\mathrm{NH}_{3}\right)_{4}\right]$, was obtained by the reaction of ammonium bromide, $\left(\mathrm{NH}_{4}\right) \mathrm{Br}$, with scandium metal in a sealed tantalum container. The crystal structure contains isolated dimers of bromide edge-connected [$\mathrm{Sc}-$ mer$\left.\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Br}_{3}\right]$ and $\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{5}\right]$ octahedra. $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{3}$ is isotypic with $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{3}$.

Comment

Just like $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{5}\right]$ (Böhmer \& Meyer, 2001), the mono- and diammoniates of scandium(III) bromide, $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$ and $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{3}$, have been obtained by the reaction of ammonium bromide, $\left(\mathrm{NH}_{4}\right) \mathrm{Br}$, and scandium metal. Both compounds crystallize isostructurally with the respective chlorides, $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}$ and $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{3}$ (Meyer \& Klein, 2002). The crystal structure of the diammoniate, $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{3}$, is presented here.

In $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{3}$, atom Sc 1 is surrounded by three ammonia and three bromide ligands, both in a meriodional arrangement. Sc2 has only one ammonia ligand and is further surrounded by five bromide ligands. These two octahedra, $\left[\mathrm{Sc} 1\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Br}_{1} \mathrm{Br}_{2 / 2}\right]$ and $\left[\mathrm{Sc} 2\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3} \mathrm{Br}_{2 / 2}\right]$, are connected through a common bromide edge (Fig. 1). The $\mathrm{Sc} 1-\mathrm{N}$ distances [$2.27(1) \AA(2 \times)$ and $2.28(1) \AA$] are slightly longer than the $\mathrm{Sc} 2-\mathrm{N}$ distance of 2.21 (1) \AA, which is very close to the $\mathrm{Sc}-\mathrm{N}$ distance in both $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$ (Meyer et al., 2003) and $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}$ (Meyer \& Klein, 2002), where $\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right) X_{5}\right]$ (X is Cl or Br) octahedra also occur. The $\mathrm{Sc}-\mathrm{Br}$ distances are between 2.58 (1) and 2.62 (1) \AA for the terminal ligands and between 2.65 (1) and 2.75 (1) \AA for the edge-connecting ligands, all averaging to $2.64 \AA$, which is very close to the average $\mathrm{Sc}-\mathrm{Br}$ distance of $2.65 \AA$ in $\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}$. The unsymmetrical dimers, which may be considered as

Figure 1
One dimer of octahedra in the structure of $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{3}$, showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Received 23 September 2003 Accepted 29 September 2003 Online 7 October 2003

Figure 2
A perspective view of the crystal structure of $\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br}_{3}$ in a polyhedral representation, showing the $\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Br}_{1} \mathrm{Br}_{2 / 2}\right]^{+} \cdot\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3} \mathrm{Br}_{2 / 2}\right]^{-}$ dipoles.
$\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Br}_{1} \mathrm{Br}_{2 / 2}\right]^{+} \cdot\left[\mathrm{Sc}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3} \mathrm{Br}_{2 / 2}\right]^{-}$dipoles, are arranged as shown in Fig. 2.

Experimental

Ammonium bromide, $\left(\mathrm{NH}_{4}\right) \mathrm{Br}(5 \mathrm{mmol}, 490 \mathrm{mg})$, and scandium metal ($3.6 \mathrm{mmol}, 163 \mathrm{mg}$) were placed in a tantalum container, which was then sealed by helium arc welding. and jacketed with a silica ampoule. The reaction mixture was heated to 623 K for 100 h . Colourless single crystals of $\left[\mathrm{Sc}_{2} \mathrm{Br}_{6}\left(\mathrm{NH}_{3}\right)_{4}\right]$ were selected under a microscope in an argon-filled dry box.

Crystal data

$\left[\mathrm{Sc}_{2} \mathrm{Br}_{6}\left(\mathrm{NH}_{3}\right)_{4}\right]$
$M_{r}=637.52$
Triclinic, $P \overline{1}$
$a=7.211(2) \AA$
$b=10.157(3) \AA$
$c=11.350(3) \AA$
$\alpha=105.39(2)^{\circ}$
$\beta=90.76(2)^{\circ}$
$\gamma=109.85(2)^{\circ}$
$V=749.0(4) \AA^{3}$

Data collection

Stoe IPDS II diffractometer ω and φ scans
Absorption correction: numerical; the absorption correction ($X-R E D$; Stoe \& Cie, 2001) was performed after optimizing the crystal shape using X-SHAPE (Stoe \& Cie, 1999)
$T_{\text {min }}=0.100, T_{\text {max }}=0.148$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.081$
$S=0.70$
2938 reflections
111 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=2.827 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2678 \\
& \quad \text { reflections } \\
& \theta=1.9-29.7^{\circ} \\
& \mu=16.88 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Column, colourless } \\
& 0.2 \times 0.1 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

6953 measured reflections 2938 independent reflections 1237 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.077$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 13$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0201 P)^{2}\right]$
\quad where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.66 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.70 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
\quad (Sheldrick, 1997)
Extinction coefficient: 0.00190 (15)

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 21-\mathrm{Sc} 2$	$2.575(3)$	$\mathrm{Br} 23-\mathrm{Sc} 2$	$2.622(3)$
$\mathrm{Br} 11-\mathrm{Sc} 1$	$2.538(3)$	$\mathrm{Br} 22-\mathrm{Sc} 2$	$2.594(3)$
$\mathrm{Br} 1-\mathrm{Sc} 1$	$2.654(3)$	$\mathrm{Sc} 1-\mathrm{N} 11$	$2.269(9)$
$\mathrm{Br} 1-\mathrm{Sc} 2$	$2.679(3)$	$\mathrm{Sc} 1-\mathrm{N} 12$	$2.269(9)$
$\mathrm{Br} 2-\mathrm{Sc} 1$	$2.679(3)$	$\mathrm{Sc} 1-\mathrm{N} 13$	$2.284(10)$
$\mathrm{Br} 2-\mathrm{Sc} 2$	$2.745(3)$	$\mathrm{Sc} 2-\mathrm{N} 21$	$2.211(10)$
$\mathrm{Sc} 1-\mathrm{Br} 1-\mathrm{Sc} 2$	$95.35(9)$	$\mathrm{Br} 1-\mathrm{Sc} 1-\mathrm{Br} 2$	$86.61(9)$
$\mathrm{Sc} 1-\mathrm{Br} 2-\mathrm{Sc} 2$	$93.25(8)$	$\mathrm{N} 21-\mathrm{Sc} 2-\mathrm{Br} 21$	$95.2(3)$
$\mathrm{N} 11-\mathrm{Sc} 1-\mathrm{N} 12$	$91.6(4)$	$\mathrm{N} 21-\mathrm{Sc} 2-\mathrm{Br} 22$	$87.9(3)$
$\mathrm{N} 11-\mathrm{Sc} 1-\mathrm{N} 13$	$175.3(4)$	$\mathrm{Br} 21-\mathrm{Sc} 2-\mathrm{Br} 22$	$92.64(9)$
$\mathrm{N} 12-\mathrm{Sc} 1-\mathrm{N} 13$	$90.5(3)$	$\mathrm{N} 21-\mathrm{Sc} 2-\mathrm{Br} 23$	$87.8(3)$
$\mathrm{N} 11-\mathrm{Sc} 1-\mathrm{Br} 11$	$91.6(3)$	$\mathrm{Br} 21-\mathrm{Sc} 2-\mathrm{Br} 23$	$92.89(8)$
$\mathrm{N} 12-\mathrm{Sc} 1-\mathrm{Br} 11$	$93.2(3)$	$\mathrm{Br} 22-\mathrm{Sc} 2-\mathrm{Br} 23$	$173.27(10)$
$\mathrm{N} 13-\mathrm{Sc} 1-\mathrm{Br} 11$	$92.4(3)$	$\mathrm{N} 21-\mathrm{Sc} 2-\mathrm{Br} 1$	$171.6(3)$
$\mathrm{N} 11-\mathrm{Sc} 1-\mathrm{Br} 1$	$89.0(3)$	$\mathrm{Br} 21-\mathrm{Sc} 2-\mathrm{Br} 1$	$93.17(9)$
$\mathrm{N} 12-\mathrm{Sc} 1-\mathrm{Br} 1$	$172.8(3)$	$\mathrm{Br} 22-\mathrm{Sc} 2-\mathrm{Br} 1$	$92.17(9)$
$\mathrm{N} 13-\mathrm{Sc} 1-\mathrm{Br} 1$	$88.4(3)$	$\mathrm{Br} 23-\mathrm{Sc} 2-\mathrm{Br} 1$	$91.35(9)$
$\mathrm{Br} 11-\mathrm{Sc} 1-\mathrm{Br} 1$	$93.95(9)$	$\mathrm{N} 21-\mathrm{Sc} 2-\mathrm{Br} 2$	$86.8(3)$
$\mathrm{N} 11-\mathrm{Sc} 1-\mathrm{Br} 2$	$88.2(3)$	$\mathrm{Br} 21-\mathrm{Sc} 2-\mathrm{Br} 2$	$177.95(11)$
$\mathrm{N} 12-\mathrm{Sc} 1-\mathrm{Br} 2$	$86.3(3)$	$\mathrm{Br} 22-\mathrm{Sc} 2-\mathrm{Br} 2$	$87.55(8)$
$\mathrm{N} 13-\mathrm{Sc} 1-\mathrm{Br} 2$	$87.7(3)$	$\mathrm{Br} 23-\mathrm{Sc} 2-\mathrm{Br} 2$	$87.06(8)$
$\mathrm{Br} 11-\mathrm{Sc} 1-\mathrm{Br} 2$	$179.43(12)$	$\mathrm{Br} 1-\mathrm{Sc} 2-\mathrm{Br} 2$	$84.79(9)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N13-H13A \cdots - ${ }^{\text {r } 23 ~}{ }^{\text {i }}$	0.89	3.12	3.690 (10)	124.1
N13-H13B $\cdots \mathrm{Br} 21^{\text {ii }}$	0.89	3.00	3.854 (11)	161.3
$\mathrm{N} 13-\mathrm{H} 13 \mathrm{C} \cdots \mathrm{Br} 23^{\text {iii }}$	0.89	2.92	3.722 (9)	150.9
$\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{Br} 22^{\text {iv }}$	0.89	2.82	3.684 (9)	163.3
$\mathrm{N} 11-\mathrm{H} 11 B \cdots \mathrm{Br} 22$	0.89	3.13	3.846 (11)	139.4
$\mathrm{N} 21-\mathrm{H} 21 A \cdots \mathrm{Br} 11^{\text {v }}$	0.89	2.77	3.514 (10)	142.5
$\mathrm{N} 21-\mathrm{H} 21 B \cdots \mathrm{Br} 21^{\text {vi }}$	0.89	2.89	3.669 (10)	147.5
$\mathrm{N} 21-\mathrm{H} 21 C \cdots \mathrm{Br} 21^{\text {vii }}$	0.89	2.81	3.609 (10)	150.5
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{Br} 21{ }^{\text {ii }}$	0.89	3.11	3.712 (10)	127.2
$\mathrm{N} 12-\mathrm{H} 12 B \cdots \mathrm{Br} 23^{\text {i }}$	0.89	2.79	3.671 (10)	169.7
$\mathrm{N} 12-\mathrm{H} 12 \mathrm{C} \cdots \mathrm{Br}_{2} 2^{\text {iv }}$	0.89	2.80	3.678 (9)	168.2

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $x, y-1, z$; (iii) $-x,-y, 1-z$; (iv) $1-x,-y,-z$; (v) $1+x, 1+y, z$; (vi) $1+x, y, z$; (vii) $1-x, 1-y, 1-z$.

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}$ distances of $0.890 \AA$. For all H atoms, a common $U_{\text {iso }}(\mathrm{H})$ value was refined.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1996); software used to prepare material for publication: SHELXL97.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Böhmer, N. \& Meyer, G. (2001). Z. Kristallogr. Suppl. 18, 125.
Brandenburg, K. (1996). DIAMOND. Release 1.0.3. University of Bonn, Germany.
Meyer, G., Cesur, N. \& Pantenburg, I. (2003). Acta Cryst. E59, i145-i146.
Meyer, G. \& Klein, D. (2002). Z. Anorg. Allg. Chem. 628, 1447-1450.
Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.

inorganic papers

Stoe \& Cie (1999). X-SHAPE. Version 1.06. Stoe \& Cie, Darmstadt, Germany. Stoe \& Cie (2001). X-RED. Version 1.22. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (2002). X-AREA. MainMenu Version 1.16. Stoe \& Cie, Darmstadt, Germany.

